Price Park Stream Restoration

2003 Annual Monitoring Report

- Delivered to: NCDENR/Ecosystem Enhancement Program 1619 Mail Service Center Raleigh, NC 27699-1619
- Prepared by: Biological & Agricultural Engineering Water Resources Research Institute North Carolina State University Campus Box 7625 Raleigh, NC 27695

March, 2004

2003 Price Park Stream Restoration Monitoring Abstract

An unnamed Tributary to Horsepen Creek, henceforth referred to as Price Park, was enhanced/restored through the North Carolina Ecosystem Enhancement Program (NCEEP). The goals and objectives of this project are as follows:

- 1.) Restore 1,776-linear feet of unnamed tributary to Horsepen Creek.
- 2.) Establish a riparian zone surrounding restored channel.

This is the 3rd year of the 5-year monitoring plan for Price Park Stream Restoration.

Project Name	Price Park - unnamed Tributary to Horsepen Creek
Designer's Name	Earth Tech of NC, Inc 701 Corporate Center Drive, Suite 475 Raleigh, NC 27607
Contractor's Name	SEI, Inc
Project County	Guilford County
Directions to Project Site	Guildford College Road Exit off I-40. Follow north to New Garden Road. After passing Guilford College and Jefferson School, turn right at the light. Follow to the bottom of the hill where the creek crosses the road at Price Park. The project is upstream and downstream of the road crossing and is fully contained within the limits of Price Park.
Drainage Area	1.0 sq mi
USGS Hydro Unit	3030002
NCDWQ Subbasin	16-11-5-1
Project Length	1,776 linear feet
Restoration Approach	 Restore 1,464 linear feet of impaired stream into 1,776 linear using Priority I techniques 50 foot riparian buffer throughout the project
Date of Completion	August 2001 with modifications, Feb. 2002 and planting completed March 2002
Monitoring Dates	4-2002, 12-2002

Table 1A. Background Information

Results and Discussion

Overall the majority of the stream is stable, there are areas of concern and areas of immediate need. Table 2A shows a summary of monitoring measurement results. Overall the project is performing well. Channel dimension, pattern, and profile are similar to as-built conditions with the exceptions of some limited areas of bank slumping. Vegetation is not succeeding to levels required for mitigation credit.

Table 2A. Summary of Channel Conditions

DIMENSION	MENSION Price Park												
	Cr	Cross-section #1			Cross-section #2			Cross-section #3			Cross-section #4		
	Riffle			Pool			Riffle			Riffle			
	As-built	Dec-02	2003	As-built	Dec-02	2003	As-built	Dec-02	2003	As-built	Dec-02	2003	
Bankfull Cross-sectional Area	24.1	25.6	37.0	50.6	49.3	44.9	31.9	28.4	31.9	36.7	43.4	36.3	
Bankfull Width	13.3	14.8	15.0	22.2	21.0	21.2	14.0	14.0	14.7	17.2	19.1	17.2	
Bankfull Mean Depth	1.8	1.7	2.5	2.3	2.3	2.1	2.3	2.0	2.2	2.1	2.3	2.1	
Bankfull Max Depth	3.5	3.6	4.3	4.9	4.8	4.8	3.6	3.4	3.6	3.2	3.6	3.7	

PATTERN	Price Park				Price Park		Price Park			
	As-built				2002		2003			
	Minimum Maximum Mean			Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Meander Wave Length	127	183	150	118	197	162	63	254	99	
Radius of Curvature	49	84	65	48	85	61	26	131	59	
Beltwidth	49	80	-	52	95	-	35	169	79	

PROFILE		Price Park			Price Park		
		As-built		2003			
	Minimum	Maximum	Median	Minimum	Median		
Riffle Length	1	Not Reported	d	9.46	59.45	46.735	
Riffle Slope	1	Not Reported	d	0.56%	2.86%	1.42%	
Run Length	1	Not Reported	d	29.4	87.3	41.8	
Run Slope	1	Not Reported	d	-0.03%	0.69%	0.16%	
Pool Length	1	Not Reported	d	22	62	38	
Pool to Pool Spacing	21	153	92	64.5	343	91.5	

SUBSTRATE	Price	Park	Price	Park	Price	Park	Price Park	
	Cross-secti	on #1	Cross-secti	on #2	Cross-secti	on #3	Cross-section #4	
	Riffle		Po	ool	Rif	fle	Riffle	
	As-built 2003		As-built	2003	As-built	2003	As-built	2003
D50	0.34 0.11		0.26	1.45	0.16	0.14	0.25	0.30
D85	87.7 68.2		1.5	14.5	6.7	12.1	6.9	14.8

7	VEGETATION	Quad 1 - JP		Quad 2 - JP		Quad 3 -JP		Quad 4 - JP		Quad 5 -JP	
		Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*	Observed	Planted*
	Tree Stratum (stems/acre)	160	0	280	40	40	0	120	120	80	80
	Shrub Stratum (% cover)	0.5	n/a	0.5	n/a	0.5	n/a	1	n/a	0	n/a
	Herb Stratum (%cover)	7.5	n/a	97	n/a	17.5	n/a	87	n/a	70	n/a

* Planted value represents number of stems observed that alive that were planted.

The following areas of concern should be monitored closely and considered for repair as suggested:

- The lack of successful vegetation in the riparian buffer
 - Supplemental plantings are needed to meet minimum density.
 - Soil should be tested for fertility and amended as directed.
- Down-cutting near channel confluence
 - This area should be monitored to ensure the down-cutting does not continue up through the project.
 - Areas with bank erosion due to overland flow washing into the channel
 - These areas should be examined closely to see if a structure is necessary to provide a stable method of allowing the water to enter the channel or if vegetation will be adequate.
 - These areas should be monitored closely during upcoming site visits to monitor degradation.
- The lack of successful herbaceous cover along sections of the streambanks.
 - These areas should be reseeded.
 - It will be required to prepare a seedbed in order establish herbaceous cover.

Vegetation Overall

- Replanting trees to obtain mitigation requirements
 - The site could benefit from larger containerized trees both for bank stability and aesthetics.
- Stake only in areas where erosion is problematic
 - Live staking should also help in the establishment of herbaceous vegetation on the bare banks.
- Monitor invasive vegetation
 - Although invasive vegetation has not consumed this project site, there are numerous species that should be controlled now, most importantly kudzu and oriental bittersweet.

Photos

The following are photographs of typical sections and areas of concern throughout the project.

Price Park – Unnamed Tributary to Horsepen Creek

Typical Riffle.

Issue Photo 1 - Station 3+00. Bank scour below cross vane

Typical Pool.

Issue Photo 2 - Station 3+60. Bank erosion behind rootwads.

Issue Photo 3 – Station 5+30 Unsecured matting and unvegetated bank.

Issue Photo 4 – Station 5+00 Erosion on bank below cross vane and washed away matting

Issue Photo 5 – Station 6+50 Unprotected bank

Issue Photo 7 – Station 7+40 Bank slump due to over-bank wash

Issue Photo 9– Station 13+70 Bank slump between root wads resulting from overland flow

Issue Photo 6 – Station 6+00 Cutting under cross vane

Issue Photo 8– Station 8+50 Bank slump due to over-bank wash

Issue Photo 10 – Station 14+10 Bank washout

Issue Photo11 – Station 13+50 Erosion near drainage channel

Issue Photo 12 – Station 13+60 Overland flow eroding channel bank

Table of Contents

2003	3 Price Park Stream Restoration Monitoring Abstract	i
Tab	le of Contents	vii
Tab	les and Figures	vii
1.0	BACKGROUND INFORMATION	1
1.1	Goals and Objective	2
1.2	Project Location	
1.3	Project Description	2
2.0	YEAR 2003 RESULTS AND DISCUSSION	
2.2	Morphology	8
2.	.2.1 Results and Discussion	8
2.3	Areas of Concern	11

Tables and Figures

.1
.3
.4
.5
.6
.9
10

1.0 BACKGROUND INFORMATION

The background information for this report is referenced from previous monitoring reports conducted by Earth Tech, Inc. The following was excerpted from 2001 Earth Tech As-Built monitoring report section 1.1:

This site is located on the west side of Greensboro off New Garden Road. The stream reach is located at the entrance to Price Park on land that is held by the City of Greensboro (Figure 1). The stream is situated in the Upper Cape Fear River Basin (8-digit hydrologic code: 03030002). Jefferson Elementary is located to the west, Price Park to the east, and Guilford College is located south of the site. Local residents use the area surrounding the stream for walking, biking, and other recreational activities.

The stream is the unnamed tributary to Horsepen Creek, henceforth referred to as the Jefferson Pilot stream. This stream drains into a private pond that backs up the lower portion of the channel. The pond elevation was raised after the restoration construction was completed. From a review of historical aerial photographs, this second order stream appears to have been straightened prior to 1937 for agricultural purposes. The drainage area is approximately 1.0 square mile (Figure 1).

Prior to the restoration, a narrow riparian corridor existed along much of the stream banks and the channel was deeply incised with active erosion and undercutting. Within this buffer, the vegetation was relatively weedy and scrubby with only approximately 10 trees with a basal diameter greater than 10 inches. Development pressures continue to increase the urbanization in the Jefferson Pilot watershed and adjacent watersheds.

The Priority I restoration involved converting the 1436 ft straightened channel into a sinuous channel that meanders for a total of 1646 ft as measured along the centerline or 1,776 along the thalweg (Appendix A). Cross-vanes and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability. A 50-foot riparian buffer on either side of the stream was planted with native vegetation. In addition, an aerial sanitary sewer line was re-aligned to be perpendicular to the stream flow and a gas line was re-routed under the stream channel.

Table 1 contains a schedule of events for the construction of the Jefferson Pilot stream.

Construction Event	Date
Channel construction	June-August 2001
Additional structure construction	February 25-28, 2002
Temporary Seeding	July-August 2001
	February 2002 (limited to disturbed areas after construction of additional structures)

Table 1. Schedule of Construction Events

Permanent Seeding	August 2001
Planting of bare-root stock	February 18-19, 2002 & March 7, 2002
As-built Stream Survey	April 11, 2002
As-built Vegetation Survey	June 6, 2002

1.1 Goals and Objective

The goals and objectives of this project are as follows.

- 1.) Restore 1,776-linear feet of unnamed tributary to Horsepen Creek.
- 2.) Establish a riparian zone surrounding restored channel.

1.2 Project Location

The project is located in Greensboro, North Carolina. From Interstate I-40 exit on Guilford College road north. Follow Guildford College road for about 2 miles and near right onto New Garden road. Follow New Garden road for about 1 mile. Past Guildford College, turn right onto Jefferson Club road. The project is located at the bottom of the hill at the stream crossing. The culvert is located in the middle of the project.

1.3 Project Description

The restoration of 1,776 linear feet of the Unnamed Tributary to Horsepen Creek, hereafter referred to as Price Park, consists of re-meandering and re-connecting the existing channel to the floodplain. Riffle-pool bedform was constructed as well as a stable meander pattern developed from stable reference streams. Pools were maintained through the use of cross vane structures used to hold the bed elevation at the outlet of the pools. Rootwads were used to stabilize the outside of the meander bends. Vegetation was planted to establish a dense root mass along the stream banks and in the riparian zone.

Figure 3. Plan view of As-built conditions

(To be attached) showing all structures with station numbers showing vegetation permanent plots showing permanent cross-sections and benchmarks showing vegetation plots showing monitoring gauges

Figure 4. Plan view of 2003 overlain on As-built (To be attached)

2.0 YEAR 2003 RESULTS AND DISCUSSION

Year 2003 monitoring results are shown for Little Pine and Brush Creek Monitoring.

2.1 Vegetation

The following describes the results of 2003 vegetation monitoring conducted at the Price Park Stream Restoration Site. Sampling and analysis methods used can be found in the appendix. Modifications to those methods are described below. Using the <u>Draft Vegetation Monitoring Plan for NCWRP Riparian Buffer and Wetland Restoration Projects</u>, 5 vegetation monitoring plots were randomly located within the riparian buffer of the Price Park project. No reference area was studied; therefore no comparisons could be made to reference conditions.

2.1.1 Results and Discussion

Vegetation within the riparian buffer of this unnamed tributary to Horsepen Creek is overall considered unsuccessful. The upper portion of the restoration site (above road culvert) was scantily vegetated with very few native species. Vegetation below the culvert was slightly denser as the area was more wetland-like and contained wetter herbaceous species such as *Juncus* spp. (rushes) and *Carex* spp. (sedges). The planted native herbaceous vegetation noted was *Helianthus* spp. (sunflowers) and *Panicum* spp. (switchgrass and deertongue). These occurred mainly on the floodplain. The banks were largely devoid of vegetation. Microstegium and Lespedeza were among many exotics located within these areas.

Live stakes were absent throughout the entire project. Planted trees and shrubs are doing poorly throughout the entire buffer, although a few sycamores (*Platanus occidentalis*) were growing well at a few locations. Volunteer species of *Cornus amonum* (silky dogwood), *Alnus serrulata* (tag alder), and *Sambucus canadensis* (elderberry) are scattered sparsely throughout. Tree mortality was apparently high when compared to the number of trees initially planted. Extrapolation from the five plots resulted in an overall average of approximately 48 planted trees per acre for this restoration site. If natural regeneration is included with planted trees, the number is increased to an average of approximately 136 trees per acre. Both of these estimates are based on a diverse mix of species as well. Natural regeneration obviously plays an important role in the restoration of this site; however, more trees are needed to meet mitigation requirements.

Invasive plant species on the site included *Lonicera japonica* (Japanese honeysuckle), *Pueraria lobata* (kudzu), *Lespedeza cuneata*, *Celastrus orbiculatus* (oriental bittersweet), *Microstegium vimineum*, and *Rosa multiflora* (multiflora rose). Kudzu and oriental bittersweet are of major concern due to their prolific spreading and choking tendencies. Kudzu was documented both upstream and downstream of the culvert in small patches. Bittersweet was heavy in adjacent mature trees above the culvert and will likely work its way into the buffer. Multiflora rose, honeysuckle, and lespedeza were scattered throughout and nowhere abundant.

2.2 Morphology

Restored channel dimension, pattern, profile and substrate were examined during the 2003 monitoring.

2.2.1 Results and Discussion

Channel profile along Price Park has maintained grade over the past year for the majority of the restored reach. Some down cutting has occurred from station 10+37 to 16+00. Above the culvert, riffles are not present. Below most of the cross vanes is a scour pool followed by a run feature. Four riffles were observed along the project. Bedrock continues to define channel grade as the project approaches the culvert.

Pools throughout the project are maintaining scour depth throughout the project. Pool length appears to be increasing but no previous data was collected to validate this observation. Pool to pool spacing has increased but this is likely the inclusion of cross vane scour pools in previous analysis. Impacts of the downstream pond on the profile remain on the lower 250 feet of the project. Backwater at low flow reaches to station 15+00, crating a long pool.

Channel cross-sections have remained mostly consistent since construction. There are areas of bank slumping as evident in cross-section #3. Most bank slumping appears to be the result of overland flow washing into the channel. Cross-section #1 continues to show signs of enlarging due to channel down cutting. Cross-section #2 (pool) is decreasing in area as a result of aggrading along the inside meander. Cross-section #4 have remained similar in area to as-built conditions.

Channel substrate has remained similar to as-built conditions throughout the reach. Cross-section #1 has decreased in coarseness (d50 of 0.34mm to 0.11mm) but appears to have stabilized. The pool cross-section (#2) has coarsened since construction showing there is a significant amount of scour through the meander. Cross-sections #3 and #4 have remained very similar to as-built conditions.

Channel pattern appears to have been maintained since construction. A few of the outside meander bends are experiencing slight migration through bank slumping but no excessive migration is evident and no shoot cut-offs are apparent.

Channel banks throughout the project vary in condition from stable and well vegetated to eroded with no vegetation. Eroded areas appear to be the result of upland and floodplain drainage into the channel and lack of stream bank vegetation. This is a particular problem in areas where the new channel approached the old channel that we filled in (station 5+00). Stormwater appears to be traveling down the floodplain in the location of the old channel and intersecting the new channel in two locations (stations 3+50 and 5+00). In these areas, herbaceous vegetation has not established and the channel bank is scouring from the top down. Stormwater is also draining from depressions on the floodplain and entering the channel in concentrated form at stations 7+40, 8+50, 13+50 through 13+70 and 14+10. Streambanks in these areas are eroded as well. Vegetation along some of the streambanks is sparse and needs supplemental planting to establish root mass on the banks.

Table 2. Summary of Channel Conditions

DIMENSION	ENSION Price Park			Price Park			Price Park			Price Park		
	Cross-section #1			Cross-section #2			Cross-section #3			Cross-section #4		
	Riffle			Pool			Riffle			Riffle		
	As-built	Dec-02	2003	As-built	Dec-02	2003	As-built	Dec-02	2003	As-built	Dec-02	2003
Bankfull Cross-sectional Area	24.1	25.6	37.0	50.6	49.3	44.9	31.9	28.4	31.9	36.7	43.4	36.3
Bankfull Width	13.3	14.8	15.0	22.2	21.0	21.2	14.0	14.0	14.7	17.2	19.1	17.2
Bankfull Mean Depth	1.8	1.7	2.5	2.3	2.3	2.1	2.3	2.0	2.2	2.1	2.3	2.1
Bankfull Max Depth	3.5	3.6	4.3	4.9	4.8	4.8	3.6	3.4	3.6	3.2	3.6	3.7

PATTERN	Price Park				Price Park		Price Park			
	As-built				2002		2003			
	Minimum Maximum Mean			Minimum	Maximum	Mean	Minimum	Maximum	Mean	
Meander Wave Length	127	183	150	118	197	162	63	254	99	
Radius of Curvature	49	84	65	48	85	61	26	131	59	
Beltwidth	49	80	-	52	95	-	35	169	79	

PROFILE		Not Reported Not Reported Not Reported Not Reported			Price Park			
		As-built			2003			
	Minimum	Maximum	Median	Minimum	Maximum	Median		
Riffle Length	1	Not Reporte	d	9.46	59.45	46.735		
Riffle Slope	Not Reported		d	0.56%	2.86%	1.42%		
Run Length	1	Not Reporte	d	29.4	87.3	41.8		
Run Slope	1	Not Reporte	d	-0.03%	0.69%	0.16%		
Pool Length	1	Not Reported			62	38		
Pool to Pool Spacing	21	153	92	64.5	343	91.5		

SUBSTRATE	TRATE Price Park Price Park		Park	Price Park				
	Cross-secti	on #1	Cross-secti	on #2	Cross-secti	on #3	Cross-secti	on #4
	Rit	fle	Po	ool	Rit	ffle	Rit	fle
	As-built	2003	As-built	2003	As-built	2003	As-built	2003
D50	0.34	0.11	0.26	1.45	0.16	0.14	0.25	0.30
D85	87.7	68.2	1.5	14.5	6.7	12.1	6.9	14.8

VEGETATION	Quad	1 - JP	Quad	2 - JP	Quad	3 -JP	Quad	4 - JP	Quad	5 -JP
	Observed	Planted*								
Tree Stratum (stems/acre)	160	0	280	40	40	0	120	120	80	80
Shrub Stratum (% cover)	0.5	n/a	0.5	n/a	0.5	n/a	1	n/a	0	n/a
Herb Stratum (%cover)	7.5	n/a	97	n/a	17.5	n/a	87	n/a	70	n/a

* Planted value represents number of stems observed that alive that were planted.

▲ Right Bankfull ----- Water Surface — Long Pro 2003 Left Bankfull

2.3 Areas of Concern

The following areas of concern should be monitored closely and considered for repair as suggested:

- The lack of successful vegetation in the riparian buffer
 - Supplemental plantings are needed to meet minimum density.
 - Soil should be tested for fertility and amended as directed.
- Down-cutting near channel confluence
 - This area should be monitored to ensure the down-cutting does not continue up through the project.
- Areas with bank erosion due to overland flow washing into the channel
 - These areas should be examined closely to see if a structure is necessary to provide a stable method of allowing the water to enter the channel or if vegetation will be adequate.
 - These areas should be monitored closely during upcoming site visits to monitor degradation.
- The lack of successful herbaceous cover along sections of the streambanks.
 - These areas should be reseeded.
 - It will be required to prepare a seedbed in order establish herbaceous cover.

Vegetation Overall

- Replanting trees to obtain mitigation requirements
 - The site could benefit from larger containerized trees both for bank stability and aesthetics.
- Stake only in areas where erosion is problematic
 - Live staking should also help in the establishment of herbaceous vegetation on the bare banks.
- Monitor invasive vegetation
 - Although invasive vegetation has not consumed this project site, there are numerous species that should be controlled now, most importantly kudzu and oriental bittersweet.

2.4 Photo Log

Price Park Photo Log

Appendices

- A. Methods
 - 1. Vegetation
 - 2. Morphology
- B. Vegetation data
 - 1. Listed by plot
 - 2. Species, number and age
 - 3. Analysis of planted vs. natural recruitment
- C. Morphology Data
 - 1. Cross-section data and plotted (DONE)
 - 2. Longitudinal data and plotted (DONE)
 - 3. Pebble count data and plotted (DONE)
 - 4. Pattern (DONE)

Project Name F						Symbol Key	r		
Task I	.ongitudina	l Profile					Thalweg Head of Riffl	le	
Date Crow S	boffer Rid	elspach, Clint	0.0			TP	Head of Pool Head of Run		
	манег, вю	eispach, Chin	011				Max Pool		
2003 Survey TW Shot	TW	TW	ws	ws	LBKF	LBKF	RBKF	RBKF	
number 3.00	Station	Elevation	Station	Elevation	Station 3.93	Elevation 97.90		Elevation	Feature
8.00	0.00 14.12	95.05 93.75			13.38	97.90	2.86		т
7.00 24.00	14.33 37.94	93.75 94.28	16.66 37.53	95.32 95.06	42.35	97.72	18.28 43.58	97.77 97.71	
26.00	51.95	93.41	53.03	94.86	62.03	97.50	52.05	97.74	TM
30.00 32.00	77.88 115.61	94.04 93.91	78.17 114.21	94.69 94.67	102.25	97.44	69.94	97.80	TU TP
34.00	126.14	93.91	126.81	94.68	129.91	97.47	126.45	98.02	TM
36.00 38.00	146.38 161.14	94.20 92.25	147.56 162.40	94.62 94.47	149.15	97.44	149.87	97.33	XV T
40.00	172.85	92.25	173.04	94.49	180.37	97.64			TU
42.00	190.87	93.39	190.29	94.50 94.50	182.18	97.57			TP
44.00 46.00	208.05 226.13	93.16 94.10	210.31 225.19	94.50 94.52	217.74	97.34			TM XV
48.00 52.00	236.11 280.00	92.48 93.23	237.95 279.70	93.99 93.85	274.17	97.56			T TP
54.00	298.26	92.24	300.34	93.82	2/4.1/	31.50	296.32	97.59	
57.00 59.00	317.71 339.57	93.54 91.97	318.94 340.14	93.90 92.90	312.72 328.22	97.03 97.01	326.35	97.33	XV T
61.00	350.88	91.97	352.20	92.90	355.59	96.99			т
63.00 65.00	367.52 391.05	91.76 91.02	369.52 393.96	92.86 92.90			368.86 384.01	96.44 96.12	
67.00	406.47	92.56	407.05	92.90	406.24	96.15	416.62	96.38	
69.00 73.00	421.23 465.59	91.15 91.48	464.31	91.79	435.98 455.50	95.63 95.50			TP TP
75.00	405.59	90.36	404.31	91.79	400.00	95.50			TM
79.00 77.00	485.25 492.66	90.76 91.87	486.02 492.78	91.83 91.64	488.98	94.89			T XV
81.00	492.66	91.87	492.78	91.64					T
83.00	507.05	89.75 90.24	507.67	90.97			507.25	94.74	
85.00 87.00	518.75 530.07	90.24 90.78	519.62 530.36	90.97 90.98	521.01	94.68			т
89.00	540.63	90.56	539.82	90.71	560.37	93.84	543.22	93.92	
91.00 93.00	554.38 578.00	89.63 89.10	578.04	90.70	560.37 582.32	93.84 93.44			TP TM
95.00	598.39	89.73	598.74	90.72			594.23	93.75	TG
97.00 99.00	601.82 612.19	90.48 88.79	601.58 612.08	90.71 90.70	606.15	93.84			т т
101.00	626.20	89.99			637.63	93.64	630.16	93.39	т
104.00 106.00	663.22 678.06	89.86 89.25	664.37 677.99	90.22 90.17	671.05	93.47	663.30 680.20	93.81 94.19	
108.00	695.81	88.78	696.58	90.18					TM
110.00 114.00	711.59 753.64	89.33 89.45	712.91 753.83	90.14 89.91	702.72 748.71	93.38 93.26	713.38 747.33	93.38 93.20	
116.00	773.25	89.20	773.82	89.92	778.26	92.81	779.89	92.98	TP
118.00 120.00	787.24 799.78	88.46 89.02	800.06	89.92					ТМ
122.00	814.13	89.64	813.76	89.88			814.37	92.93	XV
124.00 287.00	820.26 832.23	87.78 87.78			831.72	92.04			т
126.00	840.19	89.26	840.11	89.62	051.72	32.04	839.62	93.14	
289.00 291.00	841.20 847.51	88.52 88.52	841.16 847.19	88.85 88.79	850.48	91.48	846.46	92.34	Т
293.00	858.99	88.22	041.10	00.70	000.40	01.40	0-10.10		т
294.00 295.00	861.57 866.98	87.36 87.69							т
296.00	872.23	87.83	874.07	88.79	875.86	91.61	876.69	92.77	Ť
299.00 300.00	880.14 882.42	87.93 87.53							т
301.00	892.12	86.62	891.42	88.82			895.08	93.33	TM
303.00 304.00	899.70 906.20	88.29 88.65	906.15	88.73	908.24	91.46			TBROCK TBROCK
306.00	912.31	87.17	912.39	87.58	000.24	01.40	915.41	92.33	TBROCK
308.00 309.00	920.93 924.80	86.93 86.99	925.30	87.59					т
311.00	932.32	86.84	323.50	01.55					Ť
313.00 314.00	936.29 953.62	86.90 86.11	953.56	87.36	950.23	90.61			т
316.00	964.07	86.69	963.85	87.40	972.19	90.58	965.92	91.22	
318.00	988.21 994.26	86.32 87.16	988.46	87.41	004.00	00.04	4000.05	00.70	T TBROCK
320.00 322.00	1010.90	86.31	994.20 1011.26	87.37 86.66	994.39	90.81	1000.05		TBROCK
324.00	1027.32	85.76 85.51	1027.61	86.71	4000.00	91.23	1033.94	91.25	
330.00 332.00	1097.03 1108.90	85.80	1098.58 1109.02	86.38 86.47	1063.03 1109.04	91.23			TC TP
334.00	1128.52	85.48 86.04	1134.29 1150.83	86.43 86.40	4440.40	89.52	44.40 75		TM
335.00 339.00	1151.38 1160.32	86.04	1163.83	86.40	1142.43 1168.96	89.52	1143.75	89.91	T
343.00	1205.71	85.46	1205.21	86.14	1197.46	88.76	1203.45	88.86	
345.00 349.00	1218.65 1275.00	83.79 84.79	1222.47 1275.02	86.15 85.11	1229.38 1263.02	88.75 88.73	1225.35	88.88	TM TU
351.00	1307.96	84.77	1307.27	85.05	1307.09	88.24			тв
353.00 355.00	1319.50 1324.70	84.59 84.16	1318.92 1325.78		1321.67	88.41	1317.02	88.41	т
359.00	1384.62	83.98	1385.23		1393.70	87.75	1372.54	87.81	
361.00 363.00	1399.95 1417.37	83.25 84.29	1400.31 1417.19		1416.49	87.05	1418.41	87.46	T TB
365.00	1426.65	83.70	1427.41	84.14	1010	57.00			TP
367.00 369.00	1437.66 1452.86	82.84 83.51	1440.81 1453.24		1451.40	87.27			TM XV
371.00	1461.68	82.11	1464.49	84.09			1468.53	87.12	т
373.00 377.00	1472.96 1537.13	83.72 83.07	1473.41 1537.18		1478.93 1528.71	87.25 87.15	1517.79	87.25	TU TU
380.00	1551.80	82.89	1550.65	84.10	1566.57	86.81	1560.78	86.64	TP
382.00 384.00	1589.04 1607.96	82.13 83.23	1587.87 1611.73	84.12 84.14			1581.15	86.89	TM XV
385.00	1618.32	81.55		34.14	1612.92	86.28	1612.64	86.79	т
386.00 387.00	1639.82 1663.77	82.98 82.47	1651.30	84.12	1666.98	86.36	1652.05	86.53	т
388.00	1675.73	81.96		54.12	.000.00	50.50	1678.44	86.71	т
389.00 390.00	1701.10	82.83 81.67	1705.91	84.09	1709.18	85.72	1706.55	86.61	XV T
	1766.02	83.47	1765.91	84.09		30.12			тсі

02 Survey	TW	WS	BKF	
Station	Elevation	Elevation	Elevation	Feature
00+00.0	96.74	97.23	Lacoution	Fenceline
00+18.0	96.96	97.09	99.91	XVANE
00+22.0	96.01	96.80		XVANE-Max Pool
00+34.0	96.48	96.71	99.18	TR
00+60.0	95.19	96.59		TM
00+89.0	96.17	96.50	99.52	TR
01+44.0	95.47	96.57		TM
01+69.0	96.12	96.44	99.29	XVANE
01+73.0	94.50 95.62	96.44 96.43		XVANE-Max Pool
01+89.0	95.62 95.14	96.43 96.39	99.52	TM
02+25.0	95.14	96.39	99.29	XVANE
02+42.0	94.32	95.89	00.20	XVANE-Max Pool
02+64.0	95.51	95.88	99.78	TR
03+08.0	94.24	95.75		TM
03+28.0	95.43	95.63	99.16	XVANE
03+42.0	93.87	95.03		XVANE-Max Pool
03+52.0	94.48	95.04	98.57	TR
04+06.0	93.16	95.00		TM
04+21.0	94.79	94.94	98.11	XVANE
04+30.0	93.28	94.61		XVANE-Max Pool
04+39.0	92.67	94.61	97.97	TR
04+86.0 05+01.0	92.06	93.86		TM XVANE
05+01.0	93.62 91.03	93.72 92.87	96.94	XVANE XVANE-Max Pool
05+13.0	91.03	92.67	96.61	TR
05+68.0	91.26	92.50	30.01	TM
06+12.0	91.95	92.2	95.17	XVANE
06+20.0	90.39	92.22	55.17	XVANE-Max Pool
06+36.0	91.91	92.15	95.48	TR
06+91.0	90.40	92.02		TM
07+46.0	91.66	92.04	94.31	TR
08+00.0	90.61	91.71		TM
08+25.0	91.30	91.7	94.92	XVANE
08+32.0	89.66	91.58		XVANE-Max Pool
08+61.0	91.16	91.5	94.15	TR
09+10.0	89.78 91.23	91.34		TM
09+24.0 09+35.0	91.23 89.54	90.26		Top Bedrock Max Pool
09+30.0	89.89	90.15	93.5	TR
10+09.0	89.02	89.91	55.5	Top Bedrock
10+15.0	89.66	89.87	93.54	тм
10+36.0	88.68	89.51		TR
10+56.0	89.1	89.51		US Box Culvert
11+23.0	88.83	89.09		DS Box Culvert
11+65.0	88.55	88.98	92.15	XVANE
11+69.0	86.56	88.75		XVANE-Max Pool
11+88.0	88.3	88.64	91.81	TR
12+30.0	86.07	88.28		тм
12+57.0	87.94	88.13	91.1	XVANE
12+61.0	86.73	87.84	00.00	XVANE-Max Pool
12+74.0 13+37.0	87.42 86.52	87.82 87.68	90.86	TR TM
13+37.0 13+51.0	86.52 87.35	87.68 87.69	90.68	TM
13+51.0	87.04	87.36	90.68	Intermediate Poin
14+12.0	85.79	86.95	50.40	Lateral Scour Poo
14+51.0	85.63	86.95		TM
14+64.0	85.82	86.72	89.65	XVANE
14+75.0	84.72	86.72		XVANE-Max Pool
14+92.0	86.17	86.69	89.76	TR
15+47.0	85.72	86.71		Aerial Sewer Line
15+95.0	85.18	86.66		TM
16+20.0	85.56	86.69	89.4	XVANE
16+31.0	84.18	86.66		XVANE-Max Pool
16+88.0	84.84	86.68		TM
17+09.0	85.31	86.67	89.17	XVANE
17+15.0	84.30	86.63		XVANE-Max Pool

s-Built Sur TW	TW	WS	BKF	
Station	Elevation	Elevation	Elevation	Feature
00+00.0	96.39	96.86		Fenceline
00+18.0	96.83	96.83	99.55	XVANE
00+24.0	95.58	96.41		XVANE-Max Pool
00+35.0	96.40	96.51	98.85	TR
00+74.0	95.31	96.32		TM
00+94.0	96.18	96.32	98.90	TR
01+44.0	95.27	96.21		TM
01+69.0	95.86	96.11	98.90	XVANE
01+74.0	94.56	96.11		XVANE-Max Pool
01+92.0	95.76	96.11	99.30	TR
02+29.0	95.27	96.11		TM
02+46.0 02+50.0	95.85	96.06	99.01	XVANE XVANE-Max Pool
02+50.0	94.79 95.64	96.04 96.01	99.37	XVANE-Max Pool TR
03+13.0	94.18	95.39	88.37	TM
03+31.0	95.25	95.35	98.89	XVANE
03+43.0	93.57	94.89	50.05	XVANE-Max Pool
03+51.0	94.45	94.86	98.31	TR
04+05.0	93.40	94.86		TM
04+18.0	94.58	94.86	97.83	XVANE
04+30.0	93.11	94.85		XVANE-Max Pool
04+38.0	92.54	94.82	97.73	TR
04+83.0	91.97	93.46		TM
05+02.0	93.54	93.37	96.51	XVANE
05+13.0	90.92	92.79		XVANE-Max Pool
05+20.0	92.38	92.78	96.45	TR
05+61.0	90.91	92.33		TM
06+14.0	91.85	92.09 91.94	94.88	XVANE
06+21.0 06+40.0	90.67 91.75	91.94 91.94	95.19	XVANE-Max Pool TR
06+89.0	90.24	91.82	80.18	TM
07+46.0	91.69	91.81	94.98	TR
07+92.0	90.46	91.44	54.50	тм
08+24.0	91.12	91.41	94.24	XVANE
08+31.0	89.74	91.28		XVANE-Max Pool
08+54.0	91.13	91.29	94.00	TR
09+11.0	90.54	91.12		TM
09+32.0	89.27	90.02		TM
09+56.0	89.7	89.99	94.15	TR
10+04.0	89.16	89.68		Top Bedrock
10+24.0	88.81	89.27	93.41	TM
10+49.0 10+86.0	89.07 88.66	89.25 89.04		TR US Box Culvert
10+86.0	88.66	89.04 88.93		
11+64.0	88.47	88.62	91.81	DS Box Culvert XVANE
11+69.0	86.53	88.46	51.01	XVANE-Max Pool
11+85.0	88 24	88.46	91.72	TR
12+30.0	86.11	88.09		TM
12+55.0	87.84	87.95	90.9	XVANE
12+59.0	86.71	87.66		XVANE-Max Pool
12+74.0	87.41	87.62	91.07	TR
13+24.0	86.85	87.39		TM
13+48.0	87.12	87.37	90.48	TR
13+82.0	86.87	87.36		Intermediate Point
14+45.0	85.41	86.43		тм
14+64.0	86.00	86.47	89.52	XVANE
14+71.0	85.20	86.47	00.00	XVANE-Max Pool
14+96.0 15+47.0	86.20 85.72	86.43 86.35	89.62	TR Aerial Sewer Line
		86.35		Aerial Sewer Line TM
15+98.0	85.23	85.35	89 18	XVANE.
15+98.0 16+20.0	85.40	85.35	89.18	XVANE XVANE-Max Pool
15+98.0		85.35 86.35 86.35		XVANE XVANE-Max Pool TR
15+98.0 16+20.0 16+30.0	85.40 84.70	86.35	89.18 89.11	XVANE-Max Pool
15+98.0 16+20.0 16+30.0 16+45.0	85.40 84.70 85.52	86.35 86.35		XVANE-Max Pool TR

Project Name	Price Park				1			
Cross Section	#1							
Feature	Riffle							
Date	9/30/03	3						
Crew	Shaffer, Bic	lelspach, Clint	ton		* Elevations	adjusted up	adjusted up 1.	.63
	2001			2002			2003	
	Build Survey		<i>a.</i>	2002 Survey			003 Survey	• .
Station	Elevation		Station	Elevation		Station	Elevation N	lotes
0.0	98.4	edge scrub v	0	98.55	LPIN GRD	0	98.3877	
23.6	98.9	LT BOB	12	98.72		2.81	98.25001	
25.6	97.8	Toe BOB	24	98.99	LT BOB	11.5		
27.5	97.5	LDVE	26	97.76	Toe BOB	23.67		T BOR
34.0	97.2	LBKF	34.3	97.35	LBKF	26.91	97.71921	
38.6	95.1	LEWAVE	37.5	96.03		28.56	97.51953	DVE
39.4	94.0	LEW/WS	38.7	94.58	LEW	34.14	97.244 L	DKF
41.4 43.0	93.8 94.1	TW REW	38.9 42.2	94.32 93.71	LEW TW	37.32	94.89443 94.22712	
43.0 43.7	94.1 95.3	KEW	42.2 44	93.71 93.8	I W REW	30.90	94.22712	
45.2	95.5 96.1		44 44.1	95.8 95.78	KEW	40.82	93.5669 92.9152	
43.2	90.1 97.2	RBKF	44.1	95.78 96.01		40.82	92.9152 92.9173	
47.3	97.2 98.1	KDKF	44.8 47.4	90.01 97.35		41.35		
49.0 54.8	98.1 98.5	Toe BOB	47.4	97.55 98.25	RBKF	42.14	93.23559 93.53453 1	W
57.7	98.5 99.7	RT BOB	55.3	98.23 98.71	Toe BOB	43.21	93.08141	vv
59.7	100.1	KI DOD	56	98.99	THE BOD	43.7	93.5185	
74.0	100.1		59	100.17	RT BOB	44.38		
100.0	100.6		73	100.17	KI DOD	45.51	94.24056	
124.0	100.0	edge g-way	86	100.67		46.3		
121.0		cage 5 may	91.5	100.49		47.05	96.08462	
			100	100.67	RPIN GRD	49.14		BKF
			124	101.4	edge g-way	52.56	98.24567	
				10111		56.42	98.5006	
						58.72		
						69.13	100.2514 F	PIN GRD
						81.89	100.5424	
						89.22	100.3363	
						101.78	100.3065	
						113.56	100.5393	
						122.79	100.8996	

Photo of Cross-Section #1 - Looking Downstream

	As-Built	2002	2003
Area	24.1	25.64	36.99
Width	13.3	14.8	15.0
Mean Depth	1.8	1.7	2.5
Max Depth	3.5	3.6	4.3

Project Name	Jefferson Pilot
Cross Section	#1
Feature	Riffle
Date	12/17/02
Crew	Pace, Patterson

			As-Built			Dec-02						
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle	%	Cum %	Bank	Bed	%	Cum %
Silt/Clay	silt/clay	0.061	18	36.0%	36.0%	15	30.0%	30.0%	15	9	24.2%	24.2%
	very fine sand	0.062	0	0.0%	36.0%	3	6.0%	36.0%	24	1	25.3%	49.5%
	fine sand	0.125	3	6.0%	42.0%	3	6.0%	42.0%	1	2	3.0%	52.5%
Sand	medium sand	0.25	5	10.0%	52.0%	5	10.0%	52.0%		1	1.0%	53.5%
	course sand	0.50	0	0.0%	52.0%	2	4.0%	56.0%		2	2.0%	55.6%
	very course sand	1.0	1	2.0%	54.0%	5	10.0%	66.0%		4	4.0%	59.6%
	very fine gravel	2.0	0	0.0%	54.0%	2	4.0%	70.0%		3	3.0%	62.6%
G	fine gravel	4.0	0	0.0%	54.0%	2	4.0%	74.0%		0	0.0%	62.6%
r	fine gravel	5.7	0	0.0%	54.0%	1	2.0%	76.0%		7	7.1%	69.7%
a	medium gravel	8.0	0	0.0%	54.0%	2	4.0%	80.0%		8	8.1%	77.8%
a	medium gravel	11.3	1	2.0%	56.0%	1	2.0%	82.0%		2	2.0%	79.8%
v	course gravel	16.0	1	2.0%	58.0%	3	6.0%	88.0%		4	4.0%	83.8%
e	course gravel	22.6	3	6.0%	64.0%	1	2.0%	90.0%		4	4.0%	87.9%
1	very course gravel	32	0	0.0%	64.0%	1	2.0%	92.0%		4	4.0%	91.9%
	very course gravel	45	2	4.0%	68.0%	0	0.0%	92.0%		0	0.0%	91.9%
	small cobble	64	5	10.0%	78.0%	3	6.0%	98.0%		5	5.1%	97.0%
Cobble	medium cobble	90	9	18.0%	96.0%	1	2.0%	100.0%		2	2.0%	99.0%
Conne	large cobble	128	2	4.0%	100.0%	0	0.0%	100.0%		1	1.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
TOTAI	/ %of whole count		50	100.0%		50	100.0%		40	59	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.06	0.06	0.34	87.67	107.22
Dec-02	0.06	0.09	0.34	15.53	65.75
2003	0.06	0.08	0.11	19.62	68.22

Project Name	Price Park							
Cross Section	#2							
Feature	Riffle							
Date	9/30/03	3						
Crew	Shaffer, Bid	lelspach, Clint	ion		* Elevations	adjusted up	adjusted up 2.50	
	2001			2002			2003	
As-	Build Survey		2	002 Survey		:	2003 Survey	
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes	
0.0	96.9	LPIN	0	97	LPIN GRD	0	97.00 LPIN GRD	100
21.4	96.9		15	97.03		4.81	97.14	1 ca
34.7	96.9	LT BOB	35.3	97.07	LT BOB	16.12	97.00	1
38.5	95.6	Toe BOB	38.6	95.83	Toe BOB	26.54	96.98	Sale of
44.8	95.2	LBKF	45	95.37	LBKF	35.97	97.04 LT BOB	
52.0	92.7		51.8	92.94	bench	38.34	95.72 Toe BOB	
54.5	92.4		54.2	93.11		44.55	95.40 LBKF	
56.3	91.8	LEW/WS	56	92.42		49.27	93.44	ALC: N
57.1	91.4		56.8	91.17	LEW	53.1	93.27	N 18
57.7	90.8		61	90.6	TW	54.65	93.09	1000
59.2	90.4	TW @ rootv	61.8	91.04		56.06	92.04	
61.6	91.0		62.6	93.64		58.62	91.44	
62.7	94.0		66	95.68	RBKF	58.67	91.44	1110
67.0	95.7	RBKF	71.3	96.16	Toe BOB	60.21	91.20	ALC: N
71.0	96.0	Toe BOB	74	97.54	RT BOB	61.49	90.63 TW	
73.7	97.4	RT BOB	84	97.5		61.83	92.93	0.00
80.0	97.5		92.7	97.33		62.24	94.44	
87.3	97.5		100	97.49	RPIN GRD	64.43	95.12	
92.4	97.2					65.71	95.72 RBKF	
100	97.29					68.03	95.96 Toe BOB	
						71.17	96.29	
						73.74	97.50 RT BOB	
						80.58	97.62	
						90.67	97.48	1
						99.55	97.47 RPIN GRD	

Photo of Cross-Section #2 - Looking Downstream

	As-Built	2002	2003
Area	50.6	49.28	44.90
Width	22.2	21.0	21.2
Mean Dept	2.3	2.3	2.1
Max Depth	4.9	4.8	4.8

Project Name	Jefferson Pilot
Cross Section	#2
Feature	Pool
Date	12/17/02
Crew	Pace, Patterson

			As-Built			Dec-02						
Description	Material	Size (mm)	Pool	%	Cum %	Pool	%	Cum %	Bank	Bed	%	Cum %
Silt/Clay	silt/clay	0.061	5	10.0%	10.0%	11	20.8%	20.8%	11	0	11.0%	11.0%
	very fine sand		6	12.0%	22.0%	8	15.1%	35.8%	13	0	13.0%	24.0%
	fine sand	0.125	8	16.0%	38.0%	11	20.8%	56.6%	9	0	9.0%	33.0%
Sand	medium sand		16	32.0%	70.0%	6	11.3%	67.9%	6	0	6.0%	39.0%
	course sand		5	10.0%	80.0%	1	1.9%	69.8%	7	0	7.0%	46.0%
	very course sand	1.0	2	4.0%	84.0%	2	3.8%	73.6%	4	1	5.0%	51.0%
	very fine gravel	2.0	2	4.0%	88.0%	3	5.7%	79.2%	1	0	1.0%	52.0%
G	fine gravel	4.0	1	2.0%	90.0%	3	5.7%	84.9%	0	2	2.0%	54.0%
r	fine gravel		2	4.0%	94.0%	1	1.9%	86.8%	2	11	13.0%	67.0%
- a	medium gravel		1	2.0%	96.0%	2	3.8%	90.6%	1	6	7.0%	74.0%
v	medium gravel		0	0.0%	96.0%	1	1.9%	92.5%	2	7	9.0%	83.0%
0	course gravel		0	0.0%	96.0%	2	3.8%	96.2%	1	6	7.0%	90.0%
1	course gravel		1	2.0%	98.0%	0	0.0%	96.2%	1	6	7.0%	97.0%
1	very course gravel		1	2.0%	100.0%	2	3.8%	100.0%		3	3.0%	100.0%
	very course gravel		0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	small cobble		0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Cobble	medium cobble		0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
cobbie	large cobble		0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	very large cobble	180	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		53	100.0%		58	42	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.08	0.17	0.26	1.50	8.25
Dec-02	0.00	0.09	0.16	4.55	17.46
2003	0.07	0.25	1.35	14.46	25.01

Project Name	Price Park				1				
Cross Section	#3								
Feature	Riffle								
Date	9/30/03								
Crew	Shaffer, Bid	elspach, Clin	ton		* Elevations adjusted up *adjusted up 2.51 feet				
	2001			2002	-		2003		
As-	Build Survey			2002 Survey	7		2003 Survey		
Station	Elevation	Notes	Station	Elevation	Notes	Station	Elevation Notes		
0.0	96.5	LPIN	0	96.62	LPIN GRD	0	96.65 LPIN GRD		
12.5	96.7		6	96.48		2.2	96.14		
24.0	96.2	LT BOB	12.5	96.93		10.05	96.91		
25.3	95.3		23.8	96.46	LT BOB	18.28	96.56		
32.0	95.1	LBKF	24.8	95.58	Toe BOB	23.93	96.35 LT BOB		
36.2	92.5		29.8	95.1	overland wa	24.66	95.38 Toe BOB		
37.0	91.9		30.3	94.91	overland wa	30.59	95.04		
37.6	91.7	LEW/WS	30.7	94.4	overland wa	30.7	95.04 LBKF		
39.3	91.5		31	94.18	overland wa	31.38	93.49		
41.0	91.5	TW	31.3	95.05		33.01	93.54		
42.4	91.7	REW	32	95.07	LBKF	34.05	93.26		
42.8	92.6		36.5	92.88		35.78	93.16		
46.0	94.9	RBKF	37	91.98	LEW	36.52	92.74		
48.0	95.2		40.1	91.65	TW	37.03	91.68		
52.0	95.2		42.2	91.81	REW	37.58	91.52		
55.0	96.4	RT BOB	42.8	92.95		37.64	91.70		
70.0	96.4		46	95.04	RBKF	39.23	91.40 TW		
100.0	96.5	RPIN	52	95.44	Toe BOB	39.75	91.61		
			55.4	96.67	RT BOB	40.22	91.48		
			72	96.56		41.54	91.74		
			100	96.73	RPIN GRD	41.75	91.75		
						41.96	92.91		
						42.8	93.20		
						45.42	95.04 RBKF		
						48.8	95.13 Toe BOB		
						51.69	95.43 RT BOB		
						54.21	96.65		
						72.15	96.52		
						87.47	96.52		
						99.76	96.71 RPIN GRD		

Photo of Cross-Section #3 - Looking Upstream

	As-Built	2002	2003
Area	31.9	28.41	31.86
Width	14.0	14.0	14.7
Mean Dept	2.3	2.0	2.2
Max Depth	3.6	3.4	3.6

Project Name	Jefferson Pilot
Cross Section	#3
Feature	Riffle
Date	12/17/02
Crew	Pace, Patterson

			As-Built			Dec-02						
Description	Material	Size (mm)	Riffle	%	Cum %	Riffle	%	Cum %	Bank	Bed	%	Cum %
Silt/Clay	silt/clay	0.061	13	25.5%	25.5%	16	32.0%	32.0%	30	3	33.0%	33.0%
	very fine sand	0.062	8	15.7%	41.2%	4	8.0%	40.0%	6	2	8.0%	41.0%
	fine sand	0.125	6	11.8%	52.9%	4	8.0%	48.0%	11	8	19.0%	60.0%
Sand	medium sand	0.25	9	17.6%	70.6%	2	4.0%	52.0%		3	3.0%	63.0%
	course sand		1	2.0%	72.5%	4	8.0%	60.0%		3	3.0%	66.0%
	very course sand	1.0	1	2.0%	74.5%	2	4.0%	64.0%		3	3.0%	69.0%
	very fine gravel	2.0	0	0.0%	74.5%	2	4.0%	68.0%		2	2.0%	71.0%
G	fine gravel		2	3.9%	78.4%	5	10.0%	78.0%		0	0.0%	71.0%
r	fine gravel	5.7	3	5.9%	84.3%		0.0%	78.0%	1	3	4.0%	75.0%
а	medium gravel	8.0	3	5.9%	90.2%	9	18.0%	96.0%		3	3.0%	78.0%
v	medium gravel	11.3	1	2.0%	92.2%		0.0%	96.0%	1	9	10.0%	88.0%
	course gravel		1	2.0%	94.1%	1	2.0%	98.0%	1	4	5.0%	93.0%
1	course gravel		2	3.9%	98.0%	1	2.0%	100.0%		5	5.0%	98.0%
•	very course gravel		1	2.0%	100.0%		0.0%	100.0%		1	1.0%	99.0%
	very course gravel	45	0	0.0%	100.0%		0.0%	100.0%		0	0.0%	99.0%
	small cobble	64	0	0.0%	100.0%		0.0%	100.0%		1	1.0%	100.0%
Cobble	medium cobble		0	0.0%	100.0%		0.0%	100.0%			0.0%	100.0%
CODDIC	large cobble		0	0.0%	100.0%		0.0%	100.0%			0.0%	100.0%
	very large cobble		0	0.0%	100.0%		0.0%	100.0%			0.0%	100.0%
	small boulder	256	0	0.0%	100.0%		0.0%	100.0%			0.0%	100.0%
	small boulder		0	0.0%	100.0%		0.0%	100.0%			0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%		0.0%	100.0%			0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%		0.0%	100.0%			0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
TOTAL	/ %of whole count		51	100.0%		50	100.0%		50	50	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.00	0.08	0.16	6.74	21.10
Dec-02	0.00	0.07	0.28	7.78	9.49
2003	0.00	0.07	0.14	12.05	22.50

Project Name	Price Park							
Cross Section	#4							
Feature	Riffle							
Date	9/30/03							
Crew	Shaffer, Bid	elspach, Clint	on		* Elevations	adjusted up	*adjusted by	2.43
	2001			2002			2003	
	Build Survey			2002 Survey			2003 Survey	
Station	Elevation	Notes	Station	Elevation		Station	Elevation	
0.0	91.8		0	91.83	LPIN GRD	0	91.87	LPIN GRD
20.6	91.8		14	91.89		9.24	91.87	
40.0	91.5		25	91.75		19.52	91.90	
45.5	91.3	LT BOB	45.8	91.33	LT BOB	34.09	91.63	
48.0	90.1		48.4	90.2	Toe BOB	45.58	91.36	LT BOB
54.0	89.4	LBKF	54.2	89.5	LBKF	47.77	90.34	Toe BOB
59.0	86.8		59.3	87.2		49.57	90.02	
61.2	86.4	LEW/WS	60.4	86.67	LEW/WS	54.12	89.49	LBKF
65.0	86.2	TW	61.8	86.45		58.46	87.57	
66.5	86.3	REW	63	85.9	TW	59.96	86.69	
71.2	89.4	RBKF	65.2	85.91		60.86	86.49	
76.5	89.7		66.4	86.64	REW	61.36	86.59	
78.5	90.5	RT BOB	67.5	87.24		61.8	86.44	
94.7	91.3		71.5	89.5	RBKF	63.07	86.09	
100.0	91.0		76.3	89.81	Toe BOB	65.05	85.83	TW
			78.3	90.6	RT BOB	66.25	86.14	
86.0		Sewerline C	84	91.08		66.99	86.84	
			89	91.18		71.27	89.47	RBKF
			100	91.11	RPIN GRD	76.27	89.79	Toe BOB
						79.03	90.78	RT BOB
						90.66	91.26	
						99.89	91.07	RPIN GRE

Photo of Cross-Section #4 - Looking Upstream

	As-Built	2002	2003
Area	36.7	43.36	36.28
Width	17.2	19.1	17.2
Mean Dept	2.1	2.3	2.1
Max Depth	3.2	3.6	3.7

Project Name	Jefferson Pilot
Cross Section	#4
Feature	Riffle
Date	12/17/02
Crew	Pace, Patterson

			As-Built			Dec-02						
Description	Material	Size (mm)	Riffle - Bed	%	Cum %	Riffle - Bed	%	Cum %	Riffle - Bank	Riffle - Bed	%	Cum %
Silt/Clay	silt/clay	0.061	8	16.0%	16.0%	7	13.7%	13.7%	24	2	26.0%	26.0%
	very fine sand	0.062	4	8.0%	24.0%	7	13.7%	27.5%	16	0	16.0%	42.0%
	fine sand	0.125	12	24.0%	48.0%	4	7.8%	35.3%	4	1	5.0%	47.0%
Sand	medium sand	0.25	3	6.0%	54.0%	5	9.8%	45.1%	2	3	5.0%	52.0%
	course sand		0	0.0%	54.0%	1	2.0%	47.1%	2	4	6.0%	58.0%
	very course sand	1.0	4	8.0%	62.0%	2	3.9%	51.0%		1	1.0%	59.0%
	very fine gravel	2.0	4	8.0%	70.0%	5	9.8%	60.8%		2	2.0%	61.0%
G	fine gravel	4.0	3	6.0%	76.0%	2	3.9%	64.7%		3	3.0%	64.0%
r	fine gravel	5.7	4	8.0%	84.0%	5	9.8%	74.5%	1	3	4.0%	68.0%
9	medium gravel	8.0	4	8.0%	92.0%	3	5.9%	80.4%		3	3.0%	71.0%
v	medium gravel		1	2.0%	94.0%	2	3.9%	84.3%	1	10	11.0%	82.0%
•	course gravel		2	4.0%	98.0%	4	7.8%	92.2%		10	10.0%	92.0%
с 1	course gravel	22.6	1	2.0%	100.0%	0	0.0%	92.2%		6	6.0%	98.0%
1	very course gravel		0	0.0%	100.0%	3	5.9%	98.0%		1	1.0%	99.0%
	very course gravel	45	0	0.0%	100.0%	1	2.0%	100.0%		0	0.0%	99.0%
	small cobble	64	0	0.0%	100.0%	0	0.0%	100.0%		1	1.0%	100.0%
Cobble	medium cobble	90	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Conne	large cobble	128	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	very large cobble		0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	small boulder	256	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	small boulder	362	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Boulder	medium boulder	512	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	large boulder	1024	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
	very large boulder	2049	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
Bedrock	bedrock	40096	0	0.0%	100.0%	0	0.0%	100.0%			0.0%	100.0%
TOTAL	/ %of whole count		50	100.0%		51	100.0%		50	50	100.0%	

	d16	d35	d50	d85	d95
As-Built	0.06	0.14	0.25	6.85	15.06
Dec-02	0.07	0.18	1.31	13.33	32.71
2003	0.00	0.08	0.30	14.78	23.30

Project Name	Jefferson Pilot
Task	Feature Slope and Length Calculations
Date	12/17/02
Crew	Bidelspach, Shaffer, Clinton

Data given is Head of Riffle and max pool, cannot calculate lengths or slope.

2003 Data Price Park

I HUC I al K					
Run		Bed	Water		
Station	Change	elevation	elevation	change	slope
88.17		96.04	96.69		
124.21	36.04	95.91	96.67	0.02289	0.06%
183.04		95.61	96.49		
220.31	37.27	95.16	96.50	-0.0096	-0.03%
247.95		94.48	95.99		
289.70	41.75	95.23	95.85	0.14056	0.34%
350.14		93.97	94.90		
379.52	29.38	93.76	94.86	0.03611	0.12%
608.74		91.73	92.72		
687.99	79.25	91.25	92.17	0.54327	0.69%
1021.26		88.31	88.66		
1108.58	87.32	87.51	88.38	0.28008	0.32%
1285.02		86.79	87.11		
1335.78	50.76	86.16	87.03	0.0795	0.16%

Price Park						
Riffle		Bed	Water			
Station	Change	elevation	elevation	change	slope	
540.36		92.78	92.98			
549.82	9.46	92.56	92.71	0.27065	2.86%	Riffle
722.91		91.33	92.14			
763.83	40.92	91.45	91.91	0.22756	0.56%	Riffle
1232.47		85.7912	88.15			
1285.02	52.55	1285.00	87.11	1.03993	1.98%	Riffle
1335.78		86.16	87.03			
1395.23	59.45	85.98	86.52	0.51031	0.86%	Riffle

Pool	length	p-p spacing					
47	U	111 0			min	max	median
88	41		Riffle	Length	9.5	59.5	46.7
124				Slope	0.56%	2.86%	1.42%
157	33	73	Run	Length	29.4	87.3	41.8
200				Slope	-0.03%	0.69%	0.16%
235	35	77	Pool	Length	22.0	62.0	38.0
289				Spacing	65	343	92
328	39	91					
379							
417	38	89.5					
474							
496	22	87					
549							
611	62	95					
687							
722	35	124.5					
783							
810	27	92					
1119							
1160	41	343					
1173							
1235	62	64.5					
1437							
1474	37	251.5					
1560							
1621	61	135					

PROFILE		Price Park		Price Park			
	А	s-built - 2001	l	2003			
	Minimum Maximum Median			Minimum	Maximum	Median	
Riffle Length	1	Not Reported		9.46	59.45	46.735	
Riffle Slope	1	Not Reported		0.56%	2.86%	1.42%	
Run Length	Not Reported			29.4	87.3	41.8	
Run Slope	Not Reported			-0.03%	0.69%	0.16%	
Pool Length	Not Reported			22	62	38	
ool to Pool Spacing	51	150.3	63.7	64.5	343	91.5	

Task	Channel Pattern Measurements	
Date	9/30/03	
Crew	Pace, Patterson	

Jefferson Pilot						
Radius of	Meander	Channel				
Curvature	Wavelength	Beltwidth				
59.5		49-80				
64.5	127					
48.5	135					
59.5	139					
76.5	152					
68.5	150					
55.5	145					
72.5	174					
53.5	183					
69.5	166					
83.8						
64.0		52-95				
47.5	118					
61.0	170					
59.5	197					
53.5	179					
61.5	123					
84.5						
47.5	118.0	Min				
84.5	197.0	Max				
63.5	154.1	Avg				

Photo Reference Points

Price Park Stream Restoration Guilford County, North Carolina

M1-US: Meander 1, looking in the upstream direction. Fenceline represents the beginning of the project and longitudinal profile. Note bar formation and vegetation establishment in this region.

M1-DS: View from Meander 1, looking downstream towards M2.

M2-US: View from Meander 2 looking in the upstream direction towards M1.

M2-DS: View from Meander 2, looking downstream at M3.

M3-US: View from Meander 3 looking upstream.

M3-DS: View from Meander 3 looking downstream towards a cross vane that was installed after the main construction period due to concerns with the grade downstream.

2003

M4-US: View from Meander 4 looking upstream at Meander 3.

M4-DS: View from Meander 4 looking downstream towards Meander 5.

M5-US: View from Meander 5 looking upstream towards Meander 4.62

M5-DS: View from Meander 5 looking downstream towards Meander 6. 63

M6-US: View from Meander 6 looking upstream towards Meander 5. Note rip-rap was installed at the end of construction due to bed downcutting. 64

M6-DS: View from Meander 6 looking downstream. 65

M7-US: View from Meander 7 looking upstream. 66

M7-DS: View from Meander 7 looking downstream.67

M8-US: View from Meander 8 looking upstream. 68

M8-DS: View from Meander 8 looking downstream towards Meander 9. 69

M9-US: View from Meander 9 looking upstream. 70

M9-DS: View from Meander 9 looking downstream. Note the point bar formation in the lower right corner of picture.71

M10-US: View from Meander 10 looking upstream. 72

M10-DS: View from Meander 10 looking downstream. Note the bedrock in the bed of the channel exposed during construction.73

Photo Log 7

M11-US: View from Meander 11 looking upstream. 74

M11-DS: View from Meander 11 looking downstream. Jefferson Club Road crosses the stream via this 14' x 7.5 box culvert. 75

M12-US: View from Meander 12 looking upstream through the culvert. Note how the channel has narrowed and vegetated in the Year 1 photograph.76

M12-DS: View from Meander 12 looking downstream. 77

M13-US: View from Meander 13 looking upstream. 79

M13-DS: View from Meander 13 looking downstream. 80

M14-US: View from Meander 14 looking upstream. 81

M14-DS: View from Meander 14 looking downstream. Note stone step-pool outfall to connecting roadway drainage to stream channel.82

M15-US: View from Meander 15 looking upstream. 83

M15-DS: View from Meander 15 looking downstream. Note this cross-vane was moved upstream into the meander to avoid a gas line during construction. In effect, the upper portion of the cross vane has been covered up by the point bar.84

M16-US: View from Meander 16 looking upstream. The aerial sewer line was rerouted to make it perpendicular to the stream.85

M16-DS: View from Meander 16 looking downstream. Cross-vane is drowned out due to backwater from the off-site lake downstream. 86

M17-US: View from Meander 17 looking upstream. 87

M17-DS: View from Meander 17 looking downstream towards the double 10' x 8' box culvert. Cross-vane is drowned out.88